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Phase separation dynamics of model thin films
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We numerically study the dynamics of a finite, binary film quenched to temperatures at which a single
phase does not exist in bulk. Within the scope of the time-dependent, Landau-Ginzburg equation, our
calculations monitor the density order parameter from a homogeneous, high-temperature initial state to
the final equilibrium density profile in one dimension. We also obtain partial solutions in two dimen-
sions. The presence of confining boundaries causes the one-dimensional (i.e., noiseless two- or three-
dimensional) Landau-Ginzburg equation to approach equilibrium in a stepwise fashion. During each
step, the order-parameter profiles vary negligibly in time. We demonstrate that the addition of noise and
a second dimension accelerates the relaxation toward equilibrium for thick enough films while for thin

films, relaxation still proceeds in a stepwise manner.

PACS number(s): 68.15.+¢, 68.10.Cr, 68.45.Gd, 64.70.Ja

I. INTRODUCTION

A bulk, homogeneous mixture of two fluids 4 and B
will spontaneously separate into distinct A-rich and B-
rich phases upon reducing the mixture’s temperature to a
point inside the spinodal region. In a mean-field descrip-
tion of the dynamics, the temperature quench brings the
mixture into a condition of absolute instability where it
can no longer exist as a single phase. This process, often
referred to as spinodal decomposition, has been the sub-
ject of numerous theoretical, experimental, and simula-
tion studies [1]. Less is understood about phase-
separation dynamics in the presence of surfaces or free
boundaries. However, recent experiments [2—4] on poly-
mer fluids and numerical calculations [5,6] suggest that
patterns that develop during the phase separation differ
qualitatively near a surface from those occurring in bulk.
The consequences of pattern interference in the region
between a pair of surfaces is a largely unexplored subject.
The present article provides some preliminary results
that we hope will inspire future studies of the way that
surfaces affect relaxation to equilibrium in simple kinetic
models of thin films.

The so-called time-dependent, Landau-Ginzburg equa-
tion provides a simple mathematical model for exploring
the dynamics of the diffusive stages of phase separation.
During the latest stages of the process, transport in fluid
systems occurs principally through hydrodynamic flow,
and one must supplement the Landau-Ginzburg equation
with a second constitutive relation that introduces the
transverse velocity field into the phenomenology [7]. In
spite of these limitations, studies of the purely diffusive
model serve as useful first numerical and theoretical at-
tempts at examining the segregation processes occurring
in complicated liquid systems. Later, once techniques ex-
ist for analyzing the diffusive stages of the phase-
separation, hydrodynamic effects can be included in the
model to better describe the late-stage segregation pro-
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cesses. Of course, for binary systems such as magnetic
films that relax entirely diffusively, hydrodynamic modes
do not contribute to the dynamics, and the diffusive mod-
el provides a reasonable description of the kinetics all the
way to equilibrium.

The present report describes some preliminary calcula-
tions of the relaxation of a confined, binary system to
equilibrium following a rapid temperature quench from
the one-phase region of the phase diagram to a state
where the single phase is absolutely unstable. Thermal
fluctuations are sufficient to initiate segregation of an ini-
tially homogeneous bulk, binary liquid under these condi-
tions. The components’s preferential adsorption to boun-
daries can also initiate the segregation process. However,
in this case, the boundaries have a coherent rather than
random effect on the phase-separation dynamics. Thus,
for quenches well below the critical point where density
fluctuations are small, the surfaces bounding a confined
fluid may prove more effective than fluctuations at initiat-
ing and influencing the diffusive aspects of fluid phase
separation.

II. THEORETICAL BACKGROUND

Consider an incompressible, binary fluid of average
composition f and define the order parameter (r,?)
whose value denotes the local deviation of the composi-
tion from f. We model the thermodynamics of this mod-
el using a simple Landau free energy supplemented by
surface terms that phenomenologically account for pref-
erential adsorption or desorption of components. The
bulk contribution to the free energy is

= a2, U 4, C 2
= e At~ , 1
Fly]= [dz SV Y S (V) (n
with a,b,c phenomenological coefficients whose precise
values depend on the molecular model from which Eq. (1)

derives. A binary mixture generally has a cubic term in
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Eq. (1); for simplicity, we discuss only symmetric, binary
systems for which the cubic term vanishes.

As others have done [5,8], we introduce surface contri-
butions to the free energy of the form

= %y % 2
Fs_—HI¢I+7¢I_Hr¢r+7¢r . )

The H’s and a’s in Eq. (2) provide a rough measure of the
attractions and repulsions of the system components to
confining walls. In Eq. (2), H; >0 implies that, relative to
a homogeneous bulk state, the left-hand surface favors
adsorption of the order parameter. Similar arguments
apply to H, and the right-hand surface. @; and a, are
positive restoring coefficients that limit the magnitude of
¥ at these boundaries.
The order parameter varies in time as

aY(r,t) _ o, SF
ot v-MV diy(r,t) ’ )

with M a (possibly) y-dependent mobility. In the present
work, we assume a constant value for M, although more
refined studies—especially those involving polymer fluids
[9-11]—should allow for nonlocalities in M. Scaling the
order parameter, coordinates, and time according to

al 1/2
a
1,]_) - t/"rescalecl ’ (4a)
172
c
r— | al rre:sca]ed ’ (4b)
and
c
I— Wt rescaled (4c)
leads to
%’fi=v2(i¢+¢3—v2¢)+n(r,t) , ()

where we have introduced the thermal noise 7(r,?) on the
right-hand side of Eq. (5). The form of the surface free
energy leads to the boundary conditions

iy (Vi) —o=Ho—ao[¢(r,0)], - (6a)
and

ﬁL'(V¢)z=L=HL—aL[1[J(r,t)]z=L . (6b)

In Egs. 6(a) and 6(b), H, ; and o, ; are rescaled surface
terms that vary as 1/a and a ~!/2, respectively. At each
surface, the no-flux conditions

[8-V(£g+9>— V)], =0 @)

hold with 01 the surface normal at z=0 and z =L. Puri
and Binder [12] have proposed alternatives to Eqgs. 6(a)
and 6(b) that contain explicit time derivatives of the order
parameter near a surface. More recently, Diehl and
Janssen [13] have presented a rigorous, formal analysis of
the stochastic dynamics of phase-separating fluids near a
surface. They reach the conclusion that Eqgs. 6(a) and
6(b) are the only contributions relevant to the boundary
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FIG. 1. Evolution of the order parameter with time for
L =22 and one representative choice of surface parameters

(Hy=0.25, H; =0.15, a;=0.25): (a) early stages (- - - -)
t=2, (——-—) t=50; (b) intermediate stage, (---) t =310,
(—-—)t=360, (——) t=410; (c) transition to equilibrium,
(---)t=1810, (—-—) t=2160, (—-—) t=2310, (——)
t =2810.
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FIG. 2. Free energy vs time for the order-parameter evolu-
tion in the film of Fig. 1: (— ——) surface free energy contribu-
tion Fg; (- --) bulk free energy contribution Fj; ( ) total
free energy F. Each sharp decrease of F corresponds to a rapid
change in the order-parameter profile.

3000.0

conditions. This justifies our use of the simpler, equilibri-
umlike boundary conditions.

When 7(r,t) is nonzero, segregation may occur parallel
to the confining boundaries of a two- or three-
dimensional film. Assuming Gaussian statistics, 7(r,?)
obeys the fluctuation-dissipation relation [1]

(n(r,t,)m(ryt,))=—B8(t, —1t,)V?8(r,—1,) , (8)

with B =2ua?/>72¢~9/2, The noise has no qualitative
effect on the intermediate- and late-stage dynamics of
small-molecule bulk phase separation, its principal effect
being the initiation of the segregation process. In the
present work, we take Eq. (8) to apply at all times after a
quench, and the noise plays a much more dominant role
in determining the dynamics of thin films since it serves
to drive the system over free energy barriers. One should
recall, however, that Eq. (8) derives from linear-response
theory as applied to a system extremely close to equilibri-
um. Its applicability for determining the random force in
the generalized-Langevin equation [Eq. (5)] when the sys-
tem is far from equilibrium is somewhat tenuous.

III. NUMERICAL CALCULATIONS
AND DISCUSSION

First consider the one-dimensional solution of Eq. (5)
in the absence of noise. Figs. 1(a)-1(c) show the order-
parameter profile at various times following a quench
from T =oc [where ¥(r,#)=0] to a low temperature
where B =0. Figure 2 plots the free energy as a function
of time as the order parameter approaches equilibrium.
After the quench, the system rapidly develops density os-
cillations that relax toward equilibrium only slowly with
time. When relaxation finally occurs, it does so in a step-
wise fashion as Fig. 2 shows. However, between relaxa-
tion events, the profile remains almost stationary. Fur-
thermore, the time scales of the relaxation events are gen-
erally small compared to the time spent on each of the
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FIG. 3. Evolution of the two-dimensional analogue of the
film in Figs. 1 and 2: (L =22; H, 1, and aq ; are as in Fig. 1):
(a) t=10; (b) t=100; (c) t =150; (d) ¢t =300; (e) y-averaged
profiles (---) t=10, (—-—) t=100, (—-—) =150,
( ) t =300.
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FIG. 3. (Continued).

free energy plateaus of Fig. 2. The occurrence of step-
wise relaxation to equilibrium is in accord with recent
mathematical analyses of Eq. (5) [14].

We have repeated these calculations in two dimensions
for moderate noise levels that initiate segregation parallel
to the confining surfaces. Figs. 3(a)-3(e) show one run
of a typical “numerical experiment” for B =0.01 [note
that not B but V'B appears in Eq. (5), so that the noise
amplitude is 0.1]. The three-peaked profile that persists
in Figs. 1 and 2 until £ =350 rapidly relaxes to a two-
peaked profile in Fig. 3. However, the two-peaked struc-
ture then lasts at least until # =300. In the presence of
long-range, van der Waals interactions, we find that the
order parameter profiles may differ quantitatively from
those depicted in Figs. 3(a)-3(e), but the observation of a
stepwise relaxation to equilibrium remains intact. These
findings agree with previous studies of thicker fluid films
[5,6] where density oscillations initiated at a single sur-
face propagate into the bulk fluid. In the present case,
the close proximity of the two surfaces causes the density
oscillations to interfere and leads to the nonmonotonic
approach to equilibrium.

We note that the occurrence of almost metastable
states and the slow approach of the model film to equilib-

rium depends somewhat on the film thickness and the
surface parameters. For extremely thin films (L <5),
different stationary profiles obeying Egs. 6(a) and 6(b)
have very different free energies or else only one such
profile exists. Then the approach to equilibrium occurs
monotonically, and the free-energy-versus-time curves do
not exhibit plateaus. Modifying the surface properties
corresponds to adjusting the H’s and a’s of Egs. 6(a) and
6(b), and this, in part, determines whether or not the
equilibrium is achieved in steps. The most dramatic
effects occur when the surfaces have similar but slightly
different affinities for one of the film components. In Eq.
(2) this means that, for example, H, is slightly greater
than H, with both greater than 0.

Clearly the presence of thermal fluctuations and a
second dimension offers the system another channel by
which it can relax toward equilibrium. We thus expect
that in three dimensions, relaxation toward equilibrium,
for a given noise strength, proceeds more readily than in
two dimensions. However, at a given distance from the
critical temperature, the noise amplitude decreases upon
passing from two to three dimensions. Real films may
thus be observed to relax to equilibrium in a stepwise
fashion provided they are thin enough and the confining
surfaces exhibit strong preferences for the different com-
ponents. We have, in fact, repeated the calculations sum-
marized by Figs. 1-3 upon reducing the film thickness to
L =10 (from L =22) while keeping B =0.01. In this
case, the noise has a negligible affect on the dynamics,
which proceeds as in the one-dimensional case. As we
have already remarked, hydrodynamics should play an
important role in the late-stage dynamics of films. Future
studies will numerically couple the velocity fields to the
evolving order parameter. Such calculations will require
more efficient numerical algorithms for solving the result-
ing dynamical equations or perhaps generalizations of
cell dynamical models [6,15].
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